DÉRIVATION

www.mathsbook.fr

I - DÉRIVÉE D'UNE FONCTION

1 - Nombre dérivée d'une fonction en a

Définition: Soit f une fonction définie en a et $h \in \mathbb{R}$.

La fonction f est **dérivable** en a s'il existe un nombre D appartenant à \mathbb{R} tel que :

$$D = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Ce nombre D, s'il existe, est appelé **nombre dérivé** de f en a et on le note :

$$D = f'(a)$$

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \stackrel{x=a+h}{=} \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

2 - FONCTION DÉRIVÉE

Définition : Soit f une fonction dérivable et définie sur un intervalle I.

On appelle fonction dérivée la fonction qui à chaque réel x de I associe son nombre dérivée.

On la note f':

$$f': x \mapsto f'(x)$$

3 - Dérivées usuelles

Fonction	Dérivée
$k \ (k \in \mathbb{R})$	0
$x^n \ (n \in \mathbb{N}*)$	nx^{n-1}
$\frac{1}{x} (x \neq 0)$	$-\frac{1}{x^2}$
$\frac{1}{x^n} \ (x \neq 0 \ n \in \mathbb{N}^*)$	$-\frac{n}{x^{n+1}}$
$\sqrt{x} (x > 0)$	$\frac{1}{2\sqrt{x}}$

4 - Opérations sur les dérivées

Opérations sur les dérivées : Soient u et v deux fonctions dérivables et définies sur un même intervalle I et k un réel.

- -u+v est dérivable sur I et (u+v)'(x)=u'(x)+v'(x),
- $-u \times v$ est dérivable sur I et $(u \times v)'(x) = u'(x)v(x) + u(x)v'(x)$,
- $-k \times u$ est dérivable sur I et $(k \times u)'(x) = k \times u'(x)$,
- Si v ne s'annule pas sur I, $\frac{u}{v}$ est dérivable sur I et $(\frac{u}{v})'(x) = \frac{u'(x)v(x) u(x)v'(x)}{v^2(x)}$,

5 - Variations

Théorème : Soit f une fonction dérivable et définie sur un intervalle I.

- Si f'(x) = 0 pour tout $x \in I$, alors f est constante sur I,
- Si $f'(x) \ge 0$ pour tout $x \in I$, alors f est croissante sur I,
- Si f'(x) > 0 pour tout $x \in I$, alors f est strictement croissante sur I,
- Si $f'(x) \leq 0$ pour tout $x \in I$, alors f est décroissante sur I,
- Si f'(x) < 0 pour tout $x \in I$, alors f est strictement décroissante sur I.

6 - Extremum

Propriétés:

- Soit f une fonction dérivable sur un intervalle ouvert I. Si f admet un extremum local en x_0 , alors $f'(x_0) = 0$.
- Soit f une fonction dérivable sur un intervalle ouvert I et $x_0 \in I$.

Si la fonction dérivée $f'(x_0)$ s'annule en x_0 en changeant de signe, alors f admet un extremum local en x_0 .

II - APPROXIMATION AFFINE ET TANGENTE À LA COURBE EN UN POINT

Propriété: Si f est dérivable en a, alors $f(x) = (x - a)f'(a) + f(a) + (x - a)\epsilon(x)$ avec $\lim_{x\to a} \epsilon(x) = 0$. On appelle **approximation affine** de f: f(x) = (x - a)f'(a) + f(a)

Le coefficient directeur de la droite tangente à la courbe au point M_0 d'abscisse x_0 est $f'(x_0)$.

Définition: L'équation de la droite tangente à la courbe au point M_0 d'abscisse x_0 est :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

III - Théorème des valeurs intermédiaires

Théorème des valeurs intermédiaires : Si f est dérivable et si f'(x) > 0 (ou f'(x) < 0) pour tout $x \in]a, b[$, alors pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet une unique solution.