Dérivation

Etude de deux fonctions
Exercices terminale S

Voici un exercice d'une étude de deux fonctions. Après avoir calculer les dérivées de ces fonctions et tracer leur tableau de variations, vous serez amené à les comparer. Très interessant comme exercice sur les dérivées.

On considère les fonctions, définies sur l'ensemble des réels, suivantes :

étude de fonctions et dérivées

  • Etude de f :

    - Calculer la dérivée de f.
    - Etudier le signe de cette dérivée.
    - En déduire le tableau de variations de la fonction f.
  • Etude de g :

    - Calculer la dérivée de g.
    - Etudier le signe de cette dérivée.
    - En déduire le tableau de variations de la fonction g.
  • Comparaison des deux fonctions :

    Graphiquement :
    - Tracer les courbes représentatives des fonctions f et g dans un même repère dans l'intervalle [-3, 5].
    - Quels sont les coordonnées des éventuels points d'intersections de ces deux courbes ?

    Numériquement :
    - Quelle équation faut-il résoudre pour répondre à la question précédente ?
    - La résoudre.

Pour voir ce contenu,
inscris-toi gratuitement.

ou
Déjà inscrit ?
Donnez votre avis sur cet exercice.

Identifie-toi pour voir plus de contenu.

Inscription
Connexion