Fonctions exponentielle

Etude de fonctions exponentielles
Exercices terminale S

Un exercice sur la fonction exponentielle qui se rapproche des exercices du baccalauréat scientifique. Il s'agit ici d'études de fonctions exponentielles.

Soient les fonctions f et g définies par :

Etude de fonctions exponentielles


On désigne par Cf et Cg les courbes représentatives des fonctions f et f dans un repère orthonormé.

  • Déterminer la limite de la fonction f en -∞.
  • Déterminer la limite de la fonction f en +∞.
  • On pose h(x) = f(x) - g(x). Déterminer la limite de la fonction f en +∞. Donner une interprétation graphique de ce résultat.
  • Etudier la position relative des courbes Cf et Cg.
  • Montrer que la dérivée f' de f est : f ' de f est : f '(x) = (x - 1)(1 - ex).
  • Etudier le signe de cette dérivée pour en déduire les variations de la fonction f.
  • Dresser le tableau de variation des fonction f et g.
  • Tracer Cf et Cg.

Pour voir ce contenu,
inscris-toi gratuitement.

ou
Déjà inscrit ?
Donnez votre avis sur cet exercice.

Identifie-toi pour voir plus de contenu.

Inscription
Connexion