Produit scalaire dans l'espace

Déterminer l'équation cartésienne d'un cercle
Cours terminale S

Bienvenue dans ce cours méthode dans lequel je vais vous montrer comment déterminer l'équation cartésienne d'un cercle, étape par étape, après avoir donné la propriété du cours, que vous aurez au préalable apprise par coeur !

Pour voir ce contenu,
inscris-toi gratuitement.

ou
Déjà inscrit ?

Le but de ce cours méthode va être de déterminer une équation du cercle C de centre Ω(3; 2) et tangent à la droite (D) d'équation 3x + 4y - 1 = 0.

Calcul du rayon du cercle

Dans un premier temps, il va falloir calculer le rayon du cercle est r = d(Ω; (D)), soit la distance entre le centre Ω du cercle et la droite (D).

Je vous rappelle la formule pour calculer la distance d'un point à une droite : Soient distance à la droite D la droite d'équation ax + by + c = 0, avec a et b non nuls, et A(xA; yA) un point du plan.
La distance du point A à la droite distance à la droite D est la distance AH, avec H le projeté orthogonal de A sur distance à la droite D.
On a :

distance d'un point à une droite

Calculons-le maintenant, ce fameux rayon.

r = |3 × 3 + 2 × 4 - 1| = 25
12 5

Déterminons l'équation cartésienne du cercle

A présent, nous pouvons facilement déterminer une équation du cercle C.

M(x; y) ∈ (C) ⇔ (ΩM = R)

⇔ (ΩM² = R²)
⇔ (x - 3)² + (y - 2)² = 155
25

x² - 6x + 9 + y² - 4y + 4 + 144 = 0
25

x² - 6x + y² - 4y + 181 = 0
25

Conclusion

Donc, l'équation du cercle (C) recherchée est :

x² - 6x + y² - 4y + 181 = 0
25

Donnez votre avis sur ce cours méthode.

Identifie-toi pour voir plus de contenu.

Progresse encore plus vite en maths et accéde en illimité aux cours en ligne, exercices corrigés, annales de Bac et Brevet et bien plus. En savoir plus

Inscription gratuite
Connexion