coursCoursexercicesExercicesqcmQuizzannalesBac S
Nombres complexes

Nombres complexes et suites numériques
Exercices terminale S

Un peu de difficulté dans cet exercice qui mêle nombres complexes et suites numériques dans un problème très interessant à étudier seul ou à plusieurs.

Soit un la suite définie par : u0 = 1 et .
Les suites géométriques complexes se définissent de la même manière que les suites géométriques réelles.
La suite un est donc une suite géométrique à termes complexes.

  • Calculer le module et un argument de .
    Ecrire les nombres u1, u2, u3 et u4 sous forme algébrique et trigonométrique.
  • Calculer un en fonction de n. Préciser le module et un argument de un.
  • Pour quelles valeurs de n, un est-il réel ?
  • Calculer, si elle existe, la limite du module de un lorsque n tend vers l'infini.
  • Calculer le plus petit entier n0 tel que, pour tout entier naturel n > n0, on ait |un| < 0,001.

Pour voir ce contenu,
inscris-toi gratuitement.

ou
Déjà inscrit ?
Nombres complexes et suites numériques - Exercices de maths terminale S - Nombres complexes et suites numériques
: 4/5 (29 avis)
Donnez votre avis sur cet exercice.

Identifie-toi pour voir plus de contenu.

Inscription
Connexion